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ON DESCRIPTION OF DYNAMIC PROPERTIES OF THE GRAVITATIONAL FIELD IN VACUUM* 

Report presented at the Conference dedicated to the lOO-th Anniversary of the 
birth of A. Einstein, Berlin, GDR, March 2, 1979. 

L. I. SEWV 

In constructing dynamic physical models of the gravitational field within the limits of 
continua defined by the four-dimensional RiemeMian space-time with local structure of pseudo- 
Euclidean Minkovski space, we first consider the methods of introducing certain kinematic 
characteristics of such spaces. 

Four sets of coordinate lines correspond to any global coordinate system. It is generally 
possible to isolate coordinate systems,in which one of the coordinate sets consists of time- 
like or isotropic lines. Each line of such set may be taken as the world line of individual 
points that form a three-dimensional manifold of points of an "ideal medium". 

Various coordinate systems can be taken as a reference system for the system of world 
lines that define the ideal medium. The simplest example of such reference system is that 
of world lines of moving points of various material continua for which the respective coordin- 
ate systems are represented by accompanying systems of Lagrangian coordinates. Various co- 
ordinate systems with different remaining three sets of coordinate lines can be introduced for 
the same system of world lines taken as the reference system; it is, also, possible to intro- 
duce the respective reference system for every system of timelike or isotropic coordinate 
lines. 

A unit vector tangent to the timelike world line represents by definition the four-dimen- 
sional velocity of ideal medium points; it is also possible to introduce for isotropic elements 
of world lines four-dimensional tangent vectors whose length is, however, zero. 

It is possible to use in any Riemannian space a large variety of ideal media and corres- 
ponding reference systems , such as reference systems of particular forms to suit various kinds 
of Riemannian surface symmetry, reference systems with geodetic world lines, in particular, 
synchronous coordinate systems, systems with isotropic world lines including those with geo- 
detic isotropic lines, systems of harmonic coordinates, etc. In each of these examples the 
respective reference systems are, generally, not uniquely related to the ‘Riemannian space. 

A special accompanying reference system for the ideal medium , or the corresponding system 
of tetrads uniquely and invariantly related to the Riemannian space is effectively introduced 
below. 

Two accompanying reference systems can be introduced: one for the observer, and the other 
in the form of a Lagrangian system for some mobile model system. 

The characteristics and events determined and defined by the Lagrangian system for the 
model medium can, also, be analyzed using a coordinate system attached to the observer's co- 
ordinate system. The conversion of results obtained theoretically or experimentally in the 
accompanying Lagrangian system to those theoretically or experimentally obtained in that of 
the observer's represents a navigational problem generally involving integration of systems 
of equations in partial derivatives, which are closely related to the use of the determination 
of the reference and of the observer's coordinate systems /1,2/. 

For every reference system it is possible to consider a four-dimensional infinitely thin 
filament formed by infinitely close world lines adjacent to some selected fixed world line C. 

Let us consider an infinitely small volume dV that represent the locus of the ends of 
spatially similar vectors dl drawn from points of line C at a given instant of the proper 
time 'F on C and orthogonal to C. Let at the variation T'(z'> .c) the end points of vector dl 

move along their adjacent world lines C’ . At the instant of proper time z'>z the volume 
dV is replaced by volume dV’, and the respective points dV and dV',are particularized 

by their world lines, in other words, by the same values of Lagrangian coordinates. As the 
result of this transformation, the infinitely small vector dl becomes vector dl’. The 
transformation of the infinitely small three-dimensional space volume dV to dV” is a point 
affine transformation that can be defined as a pure finite deformation with a finite angle of 
rotation of the principal deformation axes. When z'--z = dr is infinitely small it is poss- 
ible to introduce the respective deformation rate tensors and the components of the correspond- 
ing rotation rate asymmetric tensor. It is moreover possible to introduce and calculate the 
components OftheRiemannian space curvature tensor using these characteristics, and generally 
to obtain expressions for the four-dimensional accelerations of points on world lines and 
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formulas for the deviation of adjacent world lines. The indicated characteristics are of a 
kinematic character whose specific form and properties are determined by the properties of 
the reference system which in any given finite Riemannian space region can be introduced with 
considerable arbitrariness. As this arbitrariness is reduced, the reference system character- 
istics become dependent on the geometric properties of the Riemannian space. The transforma- 
tion of dV to dV’ and the respective characteristics of space and of the reference system 
world lines are, thus, closely related to the selection of a reference system, i.e. of the 
ideal medium model, which, in turn, is related to the Riemannian space and could be consider- 
ed as the ideal medium that accompanies the Riemannian space. 

The construction of such accompanying reference system is equivalent to the construction 
of the related velocity field with the elimination of possible arbitrariness, otherwise, to 
the construction of a vector field uniquely and invariantly linked with the geometric charact- 
eristics that determine the Riemannian space properties. 

The construction of such a model and of the accompanying reference system can be based 
on Petrov's theory /3,4/, who had investigated the problem of the Weyl tensor canonical form 
defined by a simple formula in terms of the Ricci, the metric, and the Riemann tensors. If 
the Ricci tensor is zero, the Weyl tensor is the same as the Riemann tensor,and, consequently, 
it completelydetermines in Einstein's dynamical theory the essential properties of the gravitat- 
ional field in vacuum. In the finite region in which the Ricci and Weyl tensors are zero,the 
space is pseudo-Euclidean. 

According to Petrov's theory it is generally possible to indicate at every point of the 
Riemannian space tetrads with uniquely determined four mutually perpendicular directions in 
which the independent Weyl tensor components reduce to the canonical form, and in the general 
case represent according to him four independent real invariants. The respective canonical 
forms of the Weyl tensor determine at a given point a Riemannian space of the algebraic type. 

If a corresponding six-dimensional bivector space is introduced for the Weyl tensor, the 
first type corresponds to the case when all roots of the respective secular equations are dif- 
ferent, if these roots are multiple, special degenerate types of the Weyl tensor obtain with 
corresponding degenerate Riemannian spaces of type 2, 3, N, and D. 

According to the theory developed by Debever, Sachs, Pirani, Newman, and Penrose /5--g/ 
it is possible to introduce in a unique manner at points of type 1 space, four different prin- 
cipal isotropic directions, of which two merge at points of type 2 space, at points type 3 
space the three principal isotropic directions merge, and in type N all four principal iso- 
tropic directions merge. Type D obtains when the four principal isotropic directions merge 
pairwise in two isotropic directions. 

It was proposed in /2/ to take as the vector determining the accompanying reference sys- 
tem in type 1 the uniquely determined timelike basis vector ap directed into the future in 
tetrads that, according to Petrov, are determined by the canonical directions for the Weyl 
tensor. Zhukov had shown /lo/ that in the continuous transition from the first type to spec- 
ial degenerate types the direction of vector a4 continuously passes to the merged principal 
isotropic directions that are uniquely determined, and that only in type D two such isotropic 
directions obtain in a four-dimensional space. 

An accompanying reference system has been thus derived for all types of Riemannian space 
when the Weyl tensor is nonzero. Properties of respective world lines and their characterist- 
ics indicated above are essential invariant properties of the space itself, and in the case of 
the gravitational field in vacuum (when the Ricci tensor is zero) the system of canonical tet- 
rads and the Weyl tensor components invariant in them completely determine the geometry of 
the four-dimensional spacetime. This clearly shows that the dynamic (physical) properties of 
the gravitational field are generally determined by the properties of the devised system of 
canonical tetrads and the four independent invariants, for instance, the four independentweyl 
tensor components in these tetrads. 

It is, consequently, reasonable and evidently convenient or necessary to devise physical 
models of the gravitational field in vacuum using such a reference system. The respective ex- 
pressions for energy, the energy-momentum tensos, and other scalar and tensor characteristics 
of the gravitational field in the devised reference system attached to the gravitational field 
would be, generally speaking, of a simpler form than in other reference systems, since it is 
in this system that the various extraneous properties and characteristic parameters, which 
have to be necessarily introduced in any other reference system, are eliminated. 

It is remarkable that the reference system devised here attached to the field in vacuum 
in degenerate types in which the respective world lines become isotropic geodesic lines that 
correspond to merged principal isotropic directions, had been earlier introduced and applied 
by many authors for qualitative investigations of the gravitational field properties, and for 
devising a method for deriving exact solutions of dynamic equations of the gravitational field 
/ll-16/. It was shown in /9/ that in such reference systems composed of isotropic geodesic 
world lines the fieldequationsare of the simplest form which permits direct integration and 
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makes it possible to obtain the majority of known exact solutions, as well as a number of new 
exact solutions. These methods were, however, used up to the present only for defining spaces 
of the degenerate type. 

Reference systems constructed of arbitrary isotropic or nonisotropic goedesic world lines 
are in the general case, as well as in that of degenerate types, notuniquely related to the 
invariant geometric singularities of space. 

In canonical tetrads, or in the accompanying global coordinate system constructed with 
their use, the Weyl tensor components are of special form. This property must be considered 
as the condition that defines canonical tetrads and the selected reference system attached to 
the gravitational field, as well as the ideal medium for simulating the gravitational field. 
Owing to the special properties of the Weyl tensor components, the kinematic relations for 
respective world lines are also of special form that corresponds to essential singularities of 
the gravitational field. 

As an example, let us consider the classical problem of the gravitational field energy 
and of its energy-momentum tensor in the region of vacuum, i.e. in that part of the spacewhere 
matter and the elctromagnetic field are absent. 

The definition of the gravitational field in vacuum makes it possible to consider it as 
a Riemannian space with zero Ricci tensor. This corresponds to the vacuum dynamic equations 
(without the cosmological term) of Einstein's theory. 

The dynamic equations in various variants of the theory of gravitation are nonlinear eq- 
uations in partial derivatives. For solving these in the case of a finite volume we have no 
known physically proved boundary conditions andnoconvincingly substantiated conditions at 
possible strong surface discontinuities. 

The formulation of conditions at the boundaries of the continuity region is closely relat- 
ed to conditions at strong discontinuities whose establishment is always associated with the 
stipulation of additional assumptions which, in turn, are associated with the determination 
of equations of state and the possible presence of some additional physical processes and ef- 
fects at discontinuities. Such additional effects and the respective equations of state, when 
used in connection with variational principles, may differ from the specified invariably fixed 
Euler equations which form a closed system. Particular solutions, solutions with specified or 
unknown asymptotics at singular points that can be considered as boundary elements of the 
region of continuous solutions may be sought for the system of Euler equations. 

The condition that in the case of vacuum the Ricci tensor must be zero completes the Euler 
equations; further derivation of specific solutions depends on and is predetermined explicitly 
or implicitly by the boundary conditions. 

The establishment of conditions at strong discontinuities is, thus, a supplementary phy- 
sical problem of a nature similar to that of the basic problem of formulating Euler's equations 
for continuous processes and motions in finite regions occupiedby material media and an elec- 
tromagneticfield.Methods of constructing models of material media and fields using the basic 
variational equation, which is a generalization of the local energy equation and of universal 
and special thermodynamic relationships for the considered specific media, were developed in 
a number of publications /17-22/. These methods make it possible to establish not only the 
Euler equations but, also, the equations of state together with conditions at strong discon- 
tinuities. 

The application of the methods of model construction developed in this way makes possible 
a clear understanding and definition of the situation arising in connection with the assump- 
tions proposed by various authors relative to the gravitational field pseudotensors which from 
the physical point of view are unsatisfactorily determined. It also offers a new approach to 
a physically acceptable solution of the problem of determination of the gravitational field 
energy as a scalar and the description of interactions in that field that are determined by 
real tensors. 

With the availability of a system of accompanying tetrads for the gravitational field 
with a corresponding reference system attached to the ideally determined medium, it is possible 
to introduce by invariant means and without affecting the field system of equations, the con- 
cept of specific energy as a four-dimensional scalar by adding to the Lagrangian 11 in the 
previously introduced basic variational equation the divergence of some four-dimensional vector 
52. 

We introduce tetrads with basic vectors s1.s2, ~3, a,, where vector s, is tangent to the 
world lines of the attached reference system defined above; that vector may be assumed to be 
a unit vector in type 1 directed along the merged principal isotropic directions in the deg- 
generate types. In type 1 vector s4 is uniquely determined, while vectors a,,~, and sQ orient- 
ed along canonical directions are, according to Petrov, accurate only as regards their sign. 
In degenerate types vector 3, is isotropic and vector 8, may be assumed isotropic. Vectors 
s1 and a, are orthogonal to eQ and ad. Hence the following normalization and orthogonality 

conditions apply: 
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(34, e,) = (33, ad 7 0, (as, 34) = 1, (4% 81) = (%T sz) = 1 (1) 
(BP, 81) = (34, as) = (a,, a,) = (93, 4 = (%r a,) = 0 

It was shown by A. V. Zhukov that in the transition form one type to another, the direc- 
tion of vector 8( is continuous, while the continuity conditions cannot be satisfied for the 
directions of vectors 01, aa, as. It should be pointed out that under condition (1) the direc- 
tions of vectors Bl,Bp,sa are not uniquely determined in degenerate types. The selection of 
vector D which by definition can be introduced in the indicated tetrads represents an addi- 
tional essential hostulate which , owing to its nature, can be put in the same category as the 
known fundamental postulates of the general theory of relativity. This postulate, as other 
postulatesappliedin the simulation of real gravitational phenomena in nature, are in need 
of experimental verification. This postulate does not in essence affect the basic equations 
of the field theory, but makes itself felt through boundary conditions and conditions atstrong 
discontinuities that may accompany the considered phenomena. (In actual derivation of solu- 
tions of dynamic equations the supplementary conditions that replace boundary conditions are 
always postulated, either explicitly or implicitly). 

The assumption that strong discontinuities can always be removed, albeit at the cost by 
introducing complications of physical properties of basic models and correlate Eulers' equa- 
tions systems, (the complications appear only in the narrow regions of strong discontinuities 
in the simplified models). This does not eliminate the problem of spreading of the volume 
gravitational energy intrinsic to the field in intermediate regions, where simple models are 
acceptable, and also the problem of emission and absorption of energy because of singularities 
in the field or at its boundaries. 

There are no reasons at present for complicating many of the existing models of media and, 
consequently, it is possible to begin the investigation of energy density E of the gravitation- 
al field in vacuum on the basis of the described properties of canonical tetrads and require- 
ments for physical acceptability of obtained results, assuming that 

F = v&Y (2) 
and consider functions 8" to be components of vector Q. In the simplest field model we can 
assume that 

52 = ks, 
(3) 

where k can be a scalar function of invariants of the Weyl tensor coincident with the Riemann 
tensor or, even simpler, to assume k to be some physical constant of dimension L.[h], where 
L is length. Assumption (21 is usually accepted by all authors who postulate, often implicit- 
ly, the expression for the gravitational field energy, but the introduced functions Qi are 
not taken as components of some vector. Once formulas (2) and (3) have been fixed, further 
problems related to the tensor of the gravitational field energy-momentum and to conditions at 
strong discontinuities are solved using the technique developed for these problems /21/. If 
k == const is assumed in formula (31, then in any tetrad locally determined as an inertial re- 

ference system with orthogonal axes, in which the basis vector is equal to vector a4 defined 
above, the equality Q = k8, is satisfied and vector D is directed along the tangent to world 
lines in the accompanying reference system devised above. The accompanying reference system 
corresponds to the system of inertial tetrads determined at every point of space. These tet- 
rads are determined at every point of space with an accuracy to spatial rotation and reflect- 
ion of space axes. They can have principal axes conforming to Petrov,or Fermi-Walker tetrads 

/23/t or some other tetrad system depending on the law of rotation of the spatial tetrad axes 
during transition from one point to another along each world line. 

According to (31, vector Q is constant in each of such inertial tetrad systems, since it 
can vary only in consequence of a change of +e tetrad timelike axis 3~. We denote by ai 
the orthonormalized basis vectors at point M, and, taking into consideration the inertial 
properties of local reference systems in tetrads, denote these vectors at point M' by ’ si ; 
these vectors can be transferred from point M’ to point M. The orthonormalized bases ai 
and 3i' are evidently linked at point M by the infinitely small Lorentz transformation of the 
form ai' = (6:{ f &y')3j, where y' are the infinitely small coordinates of point M' in the 
tetrad corresponding to point Mand yii,y ' is an antisymmetric matrix with respect to i and j: 

Yiji = -Yjif. Twenty four independent components of tensor ylji are called Ricci symbols and 
determine a system of tetrads. Components of the curvature tensor and all characteristics in 
the accompanying reference system can be expressed in terms of yil, 

Equality (3) implies that the formulas 
Q = 0'3; =hz (6;: +&yl)3,; Vi@ = /$,l (4) 

are valid in the tetrad corresponding to point M. 

The addition of divergence V,Q' to the basic variational equation results in the appear- 
ance in the latter of the following two balanced terms: 

6 $ V@dr + 8WQ =0 
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If there is no discontinuity inside V, , then, according to formula (10) in /2/ it is 
possible to write 

d%=-j[ V&%1+ -+(fTgn') 1 n,do g (5) i 

By applying locally in the tetrad reference system formulas (4) and (5) to the small 
volume dVa which does not contain discontinuities and is bounded by the closed surface dB,, 
and taking into account the equality r/G = -1 valid in the tetrad coordinate system, we 
obtain 

- k s,:Yjyjnido (6) 

From which we have 

s;f = k &- y?&) (7) 

The components of tensor Sj! may be considered as the components of the ener~-moments 
tensor of the gravitational field in vacuum. 

If inside dV, there is a strong discontinuity surface Sk, then the term [Sj%yin+&,* 
appears in the right-hand side of equality (6). This additional term together with other sim- 
ilar terms dependent on the material medium and the electromagnetic field defined in the tet- 
rad coordinate system must be taken into account in conditions at discontinuities that follow 
from the basic variational equation. 

When the continuity condition of Sy' is satisfied, we have for discontinuities in the 
gravitational field in vacuum the following conditions on the surface Sk: 

]S;!q dok] = 0 (8) 

The presence of the additional terms Visl' in the expression for the Lagrangian and com- 
ponents of tensor S; may appear in equations of state, when solving specific problems, only 
in terms of boundary or initial conditions and conditions at discontinuities. 

Formulas (6) and (7) are expressed in tetrad bases, while formula (8) holds in any co- 
ordinate system. The expression for components S: can be transformed for any coordinate 
system using the rules of tensor transformations and the formulas for passing from the speci- 
fied coordinate system to the locally selected tetrad system obtained from the respective de- 
finitions of these coordinate systems. 

1. 

2. 

3. 

4. 
5. 

6. 

7. 

8. 
9. 

10. 

11. 

12. 

13. 

14. 
15. 

REFERENCES 

SEDOV, L. I., On the equations of inertial navigation with allowance for relativistic ef- 
fects. Dokl. Akad. Nauk SSSR, Vo1.231, No.6, 1976. 

SEDOV, L. I. On the local equation of energy in the gravitational field. Dokl.Akad.Nauk 
SSSR, Vo1.240, N0.3, 1978. 

PETROV, A. Z., On the simultaneous reduction of the tensor and bivector to the canonical 
form. Uch. Zap. Kazansk. Univ. Vol.110, book 3, 1950. 

PETROV, A. Z.,New Methods in the General Theory of Relativity. MOSCOW, "Nauka", 1966. 
DEBEVER, R.,Sur le tenseur de super-energie. Comp. Rend. Acad. Sci. (Paris), Vol.249,No.15, 

1959. 
SACHS, R.,Gravitational waves in general relativity. VI Proc. Roy. Sot. Ser. A, Vo1.264, 
No. 1318, 1961. 

PIRANI, F. E.,Introduction to gravitation radiation theory. In: Lectures on General Relat- 
ivity, Vol.1, 1964. Englewood Cliffs, N. J. Prentice-Hall, 1965. 

PENROSE, R.,A spinor approach to general relativity. Ann. Phys., Vol.10, No.2, 1960. 
NEWMAN, E. T. and PENROSE, R.,An approach to gravitational radiation by a method Of Spin 

coefficients. J. Math. Phys., Vo1.3, No.3, 1962, Errata:J.Math. Phys., Vo1.4, N0.7, 1963. 
ZHUKOV, A. V., On vectors and ideal reference systems determined in the gravitational field 
by the Weyl tensor. Dokl. Akad. Nauk. SSSR, ~01.246, No.1, 1976. 
NEWMAN, E. T., and UNTI, T. W. J.,Behavior of asymptotically flat empty spaces. J. Math. 
Phys., Vo1.3, No.5, 1962. 

NEWMAN, E. T. and TAMBURINO, L. A.,Empty space metrics containing hypersurface orthogonal 
geodesic rays. J. Math. Phys., Vo1.3, No.5, 1962. 

NEWMAN, E. T.,T~URINO, L,, and UNTI, T., Empty-space generalization of the Scbwarzschild 
metric. J. Math. Phys. Vo1.4, No.7, 1963. 
KINNERSLFX,W., Type D vacuum metrics. J. Math. Phys. Vol.10, No.7, 1969. 
MIEZNER, C., THORN, K. and WHEELER, J.,Gravitation /Russian translation/, VOls. l-3. 
MOSCOW, "Mir", 1977, 



146 L. I. Sedov 

16. HOCKING, S. and ELLIS, J., Large-scale Structure of Space-Time (Russian translation). 
Moscow, "Mir", 1977. 

17. SEDOV, L. I.,On the energy momentum tensor and macroscopic internal interactions in the 
gravitational field and material media. Dokl. Akad.Nauk SSSR, Vo1.164, No.3 1965. 

18. SEDOV, L. I., Mathematical methods of constructing new models of continuous media. Uspekhi 
Matem. Nauk, Vo1.20, No.5, 1965. 

19. SEDOV, L. I., Models of continuous media with internal degrees of freedom. PMM. Vo1.32, 
N0.5, 1968. 

20. SEDOV, L. I., Mechanics of a Continuous Medium,Vol.l. Moscow, "Nauka", 1976. (see also 
Pergamon Press, Book No. 09878, 1965). 

21. SEDOV, L. I.,On conditions at second-order discontinuities in the theory of gravitation. 
PMM, Vo1.36, No-l, 1972. 

22. ZHELNOROVICH, V. A. and SEDOV, L. I.,On the variational method of derivation of equations 
of state for a material medium and a gravitational field. PMM, ~01.42, No.5, 1978. 

23. FERMI, E., Sopra i fenomeni the awengono in vicinanza di una linea ovaria. Atti Accademia 
Nazionale dei Lincei Roma. Classe di Scienze Fisiche, Matematiche e Naturali, (51, Vol. 
31, 1922. 

Translated by J.J.D. 


